
NAVAL POSTGRADUATE SCHOOL
Munterey, California

AD-A219 644

411
THESIS D 3 1990

Implementation of ImageActionplus Software
for Image Analysis of Solid Propellant

Combustion Holograms

by

Valerie R. Hockgraver

September 1989

Thesis Advisor: John P. Powers

Approved for public release; distribution is unlimited

90 03 23 033



Unclassified
SECURITY CLASSIFICATION OF THiS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo 070-018

la REPQOT SEfUR!TY CLASSIFiCATION Ib RESTRICTIVE MARKiNGSUnclassified

2a SECURITY CLASSIFICATION AUTHORiTY 3 DISTRiBUTiON 'AVAILABILITY OF REPOP-
Approved for public release; dist-

2b DECLASSIFICATION/DOWNGRADING SCHEDULE ribution is unlimited

' 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 62 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDIJ, 'SP NSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATiON NUMBER
ORGANIZATION Al r Torce (if applicable)

Astronautics Laboratory
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Edwards Air Force Base PROGRAM PRO I TASK WORK UNIT
Edwards AFB, CA ELEMENT NO NO r&0461 "0 ACCESSION NO

89-X-0006 I
11 TITLE (Include Security Classification) Implementation of ImageActionplus Software for

Improved Image Analysis of Solid Propellant Combustion Holograms

12 PERSONAL AUTHOR(S)

HOCKGRAVER, Valerie R.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month. Day) 15 PACE COUNT

V Master's Thesis I FROV _ TO _Se ptember 1989 91
16 SUPPLEMENTARY NOTATION

17 COSAT" CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number)
FIELD GROUP SUB-GROUP Holograms; Image processing; Speckle; Data analysis;

- Combustion

1 ABSTRACT (Continue on reverse if necessary and identify by block number)
his thesis supports computer-aided data analysis of holograms produced from rocket

motor firings. The work reported in this thesis modified existing software code to make
it compatible with installed upgrades in the microcomputer imaging system. In particular
this involved converting the format of C language function calls to ITEX/PC image
processing software to that dictated by ITEX/PCplus software. Additional modifications
were performed to enhance code portability and optimization. Results indicate that all
efforts to incorporate the new system software have been successful., ' jJ)

2C, DSY' PW. 'C) A/A 41B ' ( ABS'R( 2' AF5 A 5( - C. ASS A .
SjCLASS ; ED E. D [ SA'.' AS P -s_- Unclassified

22a qA'.'E Of 
PESPOrS B- '.) . D,;. 22D .1 ;-,'i,% (jnClud- "'elCoa,)

POWERqI Tnhn P_ (A0 L l-20a 62Po
DD Form 1473, JUN 86 Previous editions areobsolet 1.. . , :<,- ' ' ; 7-, ).*, ; _

-- 66, Unclassified



Approved for public release; distribution is unlimited

Implementation of ImageActionplus Software for Improved Image Analysis of Solid
Propellant Combustion Holograms

by

Valerie Ruth Hockgraver
Lieutenant, United States Navy

B.S., Florida Southern College, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1989

Author: VZ "

Valerie ]Ruth H 7 raver

Approved by:

""qn P. Powers, Thesis Advisor

David W. Netzer, Second4 er

-hn P. Powers, Chairman
Department of Electrical and Computer Engineering

ii



ABSTRACT

This thesis supports computer-aided data analysis of holograms produced from

rocket motor firings. The work reported in this thesis modified existing software code to

make it compatible with installed upgrades in the microcomputer imaging system. In

particular, this involved converting the format of C language function calls to ITEX/PC

image processing software to that dictated by ITEX/PCpus software. Additional modi-

fications were performed to enhance code portability and optimization. Results indicate

that all efforts to incorporate the new system software have been successful.

,- i ' F. Code 

./or
Dist

Eo.ll
reu A wnlI N n im l mH ibI



TABLE OF CONTENTS

INTRODUCTION ............................. 1

A. BACKGROUND ............................ 1

B. THESIS OBJECTIVES ........................ 1

C. SOFTWARE SUPPORT ....................... 2

D. THESIS ORGANIZATION ...................... 2

II. SYSTEM HARDWARE MODIFICATIONS ............... 4

A. HARDWARE CONFIGURATION .................. 4

B. HARDWARE PERFORMANCE ................... 11

III. SOFTWARE PROGRAMS AND IMPROVEMENTS ............. 12

A. IMAGE PROCESSING PROCEDURE ... ........... 12

1. Image Acquisition ......................... 12

2. Image Digitization ........................ 13

3. Speckle Reduction Filtering ................... 13

4. Image Threshold ......................... 13

5. Feature Identification ....................... 14

6. Feature Sizing . .. . .. . . . . .. . . . . . . . . . . . ..... . 14

7. Histogram production ...................... 15

B. PROGRAM OPTIMIZATION .................... 15

C. SOFTWARE DEVELOPMENT TOOLS .............. 16

D. PROGRAM SPECIFICS ....................... 17

1. Program File thesis.h ....................... 17

2. Program File qeofil.c ....................... 19

3. Program File 1stat .c.............. .......... 20

ix"



4. Program File 2sigmax.c.. .. ... ... ... ... ... ... 21

5. Program File thresh it.c .. .. .. .. .. ... ... .... .... 21

6. Program File feaLid. c. .. .. .. ... ... ... .... .... 23

7. Program File sizeit.c. .. .. .. .. ... ... ... .... .. 23

8. Program File specklex.c.. .. ... ... ... ... ... ... 24

9. Program File vir-.arry.c .. .. .. .. .. . .. . .. . .. . .... 24

10. Program File genfunc.c .. .. .. .. .. ... ... ... ..... 25

a. Function start it (. .. .. .. .. .. .. .. .. .. .. .. 25

b. Function readit(). .. .. .. .. ... ... ... ... .... 26

c. Function save ito ....... .. .. .. .. .. .. .. 26

d. Function dev(stddev) .. .. .. .. .. ... ... ... ... 26

e. Function scale (factor). .. .. .. .. ... ... .... .. 27

E. SUMMARY .. .. .. ... ... ... ... ... ... ... ..... 27

IV. SOFTWARE PERFORMANCE ANALYSIS. .. .. .. .. ... ..... 28

A. EXECUTABLE PROGRAM SIZE. .. .. .. .. ... ... ..... 28

B. PROGRAM EXECUTION TIMES .. .. .. .. .. ... ... ... 30

C. PROGRAM VERIFICATION .. .. .. ... ... ... ... .... 30

V. CONCLUSIONS. .. .. .. ... ... ... ... ... ... ... ... 34

A. SUMMARY OF FINDINGS. .. .. .. ... ... ... .... .. 34

B. FUTURE WORK. .. .. .. ... ... ... ... ... ... .... 34

APPENDIX A: PROGRAM HEADER FILE: thesis.h. .. .. .. ... ..... 36

APPENDIX B: PROGRAM FILE: geofil.c. .. .. ... ... ... ... .... 39

APPENDIX C: PROGRAM FILE: lstat.c.........................45

APPENDIX D: PROGRAM FILE: 2sigma.c....................... 49

APPENDIX E: PROGRAM FILE: threshit.c...................... 53

APPENDIX F: PROGRAM HEADER FILE: feat-1d.c................ 54



APPENDIX G: PROGRAM FILE: sizeit.c........................ 58

APPENDIX H: PROGRAM FILE: specklex ..................... 63

APPENDIX IL PROGRAM FILE: vir-.arry.c...................... 65

APPENDIX J: PROGRAM FILE: genfunc.c..................... 69

APPENDIX K: C COMPILER OPERATIONS.................... 76

REFERENCES........................................ 78

INITIAL DISTRIBUTION LIST............................. 80



LIST OF TABLES

4.1 Comparisons of Executable Program Size (KB) .... ............ 28

4.2 Comparisons of Actual Program Size (KB) ................... 29

4.3 Program Execution Times ...... ........................ 30

4.4 Speckle Index Reduction Results Obtained from Modified Programs . 32

4.5 Speckle Index Reduction Results (Ref. 4) ..................... 32

vii



LIST OF FIGURES

2.1 Elements of the Image Processing System. The Dotted Rectangle En-

closes Frame Grabber Board. (From Ref. 7) ................... 5

2.2 Display of AVW and Hidden Areas of Dual Memory Configuration.

(From Ref. 6) ....... ................................ 6

2.3 Display of AVW and Hidden Areas of Single Memory Configuration.

(From Ref. 6) ....... ................................ 7

2.4 PCVISIONplus Dual Frame Memory Layout. (From Ref. 7) ....... 9

2.5 PCVISIONplus Single Frame Memory Layout. (From Ref. 7) ..... .. 10

2.6 PCVISION Frame Memory Layout. (From Ref. 8) ............... 10

3.1 Flow Diagram of Image Processing Programs .................. 18

4.1 Unfiltered j17res4.img ................................. 31

4.2 jl7res4.img Image After Six Iterations of the Geometric Filter ..... .33

vii i



LIST OF ABBREVIATIONS

AFRT Air Force Resolution Target

AVW Active Video Window

DIR Directory

DOS Disk Operating System

EGA Enhanced Graphics Adapter

IBM International Business Machines

I/O Input/Output

MSC Microsoft C Compiler Ver. 5.0

PC Personal Computer

SAR Synthetic Aperture Radar

SI Speckle Index

STATGRAPHICS Statistical Graphics Systems

ix



ACKNOWLEDGMENT

I would like to express my gratitude and appreciation to the people who have

helped me troubleshoot some difficult areas of this thesis. In particular I would like

to offer special thanks to Greg Pitman and Steve Spehn. Mike Fortenberry of Imaging

Technology, Inc. also deserves my debt of gratitude.

X



I. INTRODUCTION

A. BACKGROUND

This thesis was a continuation of the work currently being performed at the

Naval Postgraduate School and was supported by the contributions attained in Ref-

erences 1, 2, 3 and 4. The goal of this research was to obtain data concerning the

effect of propellant properties upon the performance of solid propellant rocket mo-

tors. Data analysis is performed on holographic images obtained from combustion

products created during rocket firings. Holograms are obtained through the use of

a pulsed ruby laser and a holocamera. Reconstruction of the holographic image for

analysis is achieved with a krypton laser, variable-power microscope, and video cam-

era. I 'ifortunately. the optical diffuser required to record the hologram creates a

speckh ,errupted image which must be filtered before the data retrieval process is

initiated. The data attained from these procedures is used in performance studies.
9

stability analysis predictions, and exhaust signature diagnosis.

B. THESIS OBJECTIVES

The thesis objectives were:

1. 'Jo implement software modifications in existing local code in support of the
new computer system configuration.

2. To enhance program code portability.

3. To optimize program code and attempt to reduce user interaction where possi-
ble.

4. To create a menu format for executable files.

All objectives were accomplished. ITEX/PCplus library routines have been suc-

cessfully integrated into the image analysis programs. The program file gcnfiinc.c was



used to optimize program size, and new functions were created for user convenience.

A menu format was devised to make the image analysis procedure easier to use.

C. SOFTWARE SUPPORT

The associated system software consists of the following items:

* Image analysis programs ,rreated via thesis research in References 1, 2, 3, and
4,

* Imaging Technology's ImageActionplus Software package,

* Imaging Technology's ITEX/PCplus software library,

* IBM Disk Operating System version 3.3 (DOS),

* Microsoft C optimizing compiler version 5.0 (MSC), and

* Microsoft Codeview version 2.10.

The ImageActionplus software package is a menu-driven system that allows the

user to process stored or live video images [Ref. 5]. The two-level menu organization

provides image analysis, graphics, geometric operations, and image processing capa-

bilities. This software package also has the ability to utilize user-generated special

purpose script files. The script files are created in C language and are supported by

libraries created by Imaging Technology, Inc. Imaging Technology's ITEX/PCplus

software libraries are compatible only with the Microsoft PASCAL, FORTRAN, and

C compilers. These libraries consist of image processing and graphics function sub-

routines used in conjunction with the PCVISIONplus Frame Grabber board, a frame

memory and video digitizer installed in the IBM PC/AT.

D. THESIS ORGANIZATION

This thesis is organized into five chapters. The introductory chapter provides

the project background and goals. It also discusses thesis objectives and organization.

2



Chapter II describes the system hardware modifications. The PCVISION and

the PCVISIONplus hardware configurations are compared, and the respective hard-

ware capabilities are presented. Also the hardware performance is briefly discussed.

The third chapter gives a synopsis of the image processing procedure and dis-

cusses actual software programs and improvements at length. The chapter also de-

scribes the techniques and software development tools utilized for program modifica-

tion. Finally, Chapter III provides program specifics.

The software performance analysis is provided in Chapter IV. Program analysis

consisted of comparisons in the following areas: executable program size, program

execution times, and program result verification.

Lastly, Chapter V summarizes the findings obtained during the course of this

research and provides recommendations for future thesis research.

:3



II. SYSTEM HARDWARE MODIFICATIONS

A. HARDWARE CONFIGURATION

Digital image processing involves the achievement of the following objectives

through a computer interface: recognition, segmentation, enhancement, or analysis

of an image. The image processing and digitization system consists of the following

components:

" An IBM PC/AT computer with 40 megabyte hard drive,

" An Intel INBOARD 386/AT microprocessor and 80387 math coprocessor,

" An AST ADVANTAGE memory expansion board,

* A PCVISIONplus Frame Grabber board,

" A computer monitor with EGA display,

* A Panasonic color video data monitor, and

" A video cassette recorder.

A block diagram of the basic elements of the image processing system is presented

in Figure 2.1. One of the primary components of this image processing system is

the video cassette recorder, which provides the introduction of the image into the

PCVISIONplus Frame Grabber board. This image signal consists of timing and

analog video information in a standard RS170 video format. Through the digitization

process, the analog signal is converted to a digital format for processing and storage.

The IBM PC/AT central processing unit accesses these digital values via the frame

memory.

The PCVISIONplus Frame Grabber is a single board that is connected directly

into one of the 16-bit expansion slots of the IBM PC/AT computer. Pixels are stored

in frame memory after the Frame Grabber digitizes the analog video signal at a

4



C-)

0

ID

7--]
Ui _j

S ILICE to

w

uzI
NM CC

K L

Figure 2.1: Elements of the Image Processing System. The Dotted Rect-
angle Encloses Frame Grabber Board. (From Ref. 7)

5



x,y==0,0 511,0 0,0 511,0

IMAGE IMA GE
AREA AREA

(A) (B)

0,479 511,479 09479 511,479

BIDDEN AREA
0.511 __________________ __ 511,511

Figure 2.2: Display of AVW and Hidden Areas of Dual Memory Configu-
ration. (From Ref. 6)

rate of thirty frames per second with eight bits of accuracy. In previous work, a

PCVISION Frame Grabber board was utilized (versus the PCVISIONplus version).

The PCVISIONplus board permits either two 512 x 512 pixel images or one 640 x

512 pixel image to be stored within frame memory Illef. 7:p. 1-4]. In the PCVISION

board, only one 512 x 512 pixel image can be stored [Ref. 8:p. 1-2]. The bottom

thirty-two lines of the video output from both versions of the Frame Grabber board

are within a "hidden area" which can be accessed by the host computer but not viewed

on the video monitor without scrolling the image. The active vidco windou, (AVW)

is the area within frame memory in which the pixel values are displayed or stored via

the scanning circuit [Ref. 6: p. 1-14]. Figure 2.2 and Figure 2.3 indicate respectively

the dual and single memory configuration hidden and AVW areas. Currently, only

the dual memory configuration is utilized in thesis research.

6



x,y-0,0 540,0 1023,0

IMAGE HIDDEN

AREA AREA

0,479 640,479 1023,479

0,511 1023,511

Figure 2.3: Display of AVW and Hidden Areas of Single Memory Config-
uration. (From Ref. 6)

Prior to display of the image on the video monitor, look-up tables (LUT) are

employed for the transformation of pixel intensities. The original PCVISION Frame

Grabber had only four LUTs associated with output (Ref. 8 :p. 2-8]. The current

Frame Grabber board has one input digitization path and three output channels, each

allocated eight LUTs [Ref. 7:p. 1-4]. These LUTs allow for real time processing by

virtue of their ability to afford simple point transformations of the 256 gray levels

without any processing delay. Look up tables are addressed by eight bits of pixel

information provided by the frame memory. A digital-to-analog converter and the

look up tables constitute the display logic unit of both versions of the Frame Grabber

boards. The digital-to-analog converter receives gray intensity values corresponding

to the actual value addressed within the LUTs [Ref. 8:p. 2-9].

7



Both versions of the Frame Grabber board are compatible with the IBM PC/AT

computer bus structure. This host interface provides the communication path be-

tween the Frame Grabber boards and the personal computer. The previous PC-

VISION board host interface consisted of three components: the Interrupt Logic,

Control Register Interface, and the Frame Memory Interface [Ref. 8:p. 2-1]. The

PCVISIONplus host interface is composed of the Control Register Interface and the

Frame Memory Interface [Ref. 7:p. 4-2]. The Interrupt Logic had afforded the

PCVISION Frame Grabber the ability to be controlled in real time while the IBM

personal computer processed other instructions [Ref. 8:p. 2-3]. This outdated design

feature has been superceded by transparent computer access to frame memory in the

PCVISIONplus system [Ref. 7:p. 1-6].

Within the input/output (I/O) space of the PC/AT, sixteen bytes are reserved

for the PCVISIONplus Frame Grabber control registers. Currently, only twelve of

these sixteen bytes are being used by the system. Access to the remaining bytes

is prohibited; they are reserved for future system growth [Ref. 7:p. 4-3]. On the

contrary, the PCVISION board requires 32 bytes within the I/O space for its control

registers. Only the first seven of these bytes are actually utilized for control functions

[Ref. 8:p. 2-3].

The frame memory of the PCVISIONplus system is apportioned into eight equiv-

alent blocks of 64K bytes. Block dimensions are 512 pixels by 128 pixels, and the

physical layout of the dual-store configuration frame memory is shown in Figure 2.4.

This configuration can be contrasted to that of the 640x512 image in which memory

is apportioned into eight blocks of 1024 pixels by 64 pixels. The single-store frame

memory configuration can be viewed in Figure 2.5. Individual selection of these blocks

is controlled by select bits within the Control Register. As viewed by the host, each

block gives the semblance consecutive data bytes originating at the memory base

8



(0,0) (511,0) (1023,0)

Block 0 Block 4

(0,128) (1023,128)
Block 1 Block 5

Block 2 Block 6

Block 3 Block 7

(0,511) (1023,511)

Figure 2.4: PCVISIONp/us Dual Frame Memory Layout. (From Ref. 7)

address [Ref. 7 :p. 4 -3]. For the PCVISION system, the frame memory was subdivided

into four blocks of 256 pixels by 256 pixels, forming a quadrant structure as displayed

in Figure 2.6. At any time only one block can be accessed from the personal computer

bus [Ref. 8:p. 2-7).

Both versions of the Frame Grabber board require the assignment, of a single

block of 64K bytes within the IBM PC/AT memory space located above 640K. Spe-

cialized software controls the mapping of individual blocks of frame memory into this

reserved space [Refs. 7 and 8J. In the case of the PCVISIONplus board, the memory

base address is factory-configured at address AOOOOII. This address may be modified

upon board installation provided the subject address selected is within the guidelines

set forth in Reference 7.

It was originally intended that this thesis work would be implemented on a

COMPAQ DESKPR() 386/20 computer system. The PCVISIONpl/s memory base

9



(0,0) (1023,0)
(0,64) Block 0 (1023,64)

Block 1
Block 2
Block 3
Block 4
Block 5
Block 6

(0,511) Block 7 (1023,511)

Figure 2.5: PCVISIONpIus Single Frame Memory Layout. (From Ref. 7)

0 1

2 3

Figure 2.6: PCVISION Frame Memory Layout. (From Ref. 8)

10



address was configured to an approved value of DOOOOH. Therefore, the address region

from DOOOOH to DFFFFH was reserved within the computer memory space, and all

other memory and peripherals were restricted access to that memory region. Upon

subsequent testing and diagnostic checks, it was found that there was an unresolved

memory conflict within the COMPAQ computer memory which affected some of the

operations of the Frame Grabber board. Due to necessity, the board was consequently

installed in the IBM PC/AT. Memory base address DOOOOH was again selected; this

time there were no resident memory conflicts.

B. HARDWARE PERFORMANCE

With the introduction of the PCVISIONplus Frame Grabber board, the ability

to process two separate images in frame memory is invoked. The dual memory con-

figuration allows the host to select either image area for analysis and manipulation.

A display memory function allows the user to view independently either image area.

These capabilities allow for considerable future flexibility in the analysis of the rocket

motor holograms.

The PCVISIONplus board not only provides more image processing capabilities

than the PCVISION board, but it also establishes the need for additional function

libraries to support its abilities. For this reason, image analysis programs devised in

prior thesis research had to be modified to reflect the new supporting libraries. These

programs and their resulting modifications are emphasized in the following chapter.

11



III. SOFTWARE PROGRAMS AND
IMPROVEMENTS

A. IMAGE PROCESSING PROCEDURE

As was discussed in the introductory chapter, holographic techniques are em-

ployed to obtain the image of combustion products from small rocket motors during

firing. During the hologram reconstruction process, a krypton laser is used in con-

junction with a variable power microscope. Due to the presence of a diffuser that is

required to eliminate thermal gradient effects, speckle noise is introduced into the cap-

tured image. The following paragraphs describe the procedure developed to acquire

and process this image for statistical study.

1. Image Acquisition

The speckle-corrupted image is recorded for future processing via a combi-

nation of a video cassette recorder and low-light-level camera attached to the variable

power microscope. The magnification power of the microscope determines the rel-

ative size of the pixel elements comprising the image. Pixels are the standard unit

for the measurement of the features within the image. Object sizes are determined

by scaling the measured object width (in pixels) by the dimension spanned by one

pixel (in microns per pixel). A quantization error is introduced into this calculation

due to the necessity of measuring dimensions with an integer number of pixels. As

the width decreases, the proportional level of uncertainty increases, which produces

a more erroneous scale factor calculation. A calibration object is inserted within the

holographic image to determine the width spanned by a pixel. It is essential that this

object covers an appreciable portion of the monitor screen (at least one half of the

12



area) to counteract this quantization error. The calculation of the conversion factor

from pixels to microns becomes increasingly important in subsequent steps of image

processing.

2. Image Digitization

From the VCR tape obtained from the hologram reconstruction, the menu-

driven ImageActionplus software is used to "grab" and digitize the desired image.

The PCVISIONplus Frame Grabber board implements this procedure. The digitized

video image is comprised of a 512 x 480 array of pixels having gray intensity levels

ranging from 0 to 255. These intensity levels extend from blackest-black, level 0, to

whitest-white, level 255.

3. Speckle Reduction Filtering

Image filtering is the paramount technique used in speckle reduction. The

amount of speckle reduction achieved by filtering algorithms is gauged by a calculation

of the speckle index. Speckle index is defined as the ratio of the image's local deviation

to the local mean of pixel values, and this measure is indicative of the random speckle

noise inherent in the image [Ref. 1:pp. 17-19).

The three filtering algorithms are based upon synthetic aperture radar

(SAR) theory presented in References 9 and 10. There are three separate filter mod-

els. Derived from nonlinear techniques. two filter designs are based upon statistical

methods. The third filter model has its foundation in a geometric hulling algorithm.

The geometric hulling algorithm produces the best results by enabling the user to

discontinue filtering at a less severe level of resolution degradation.

4. Image Threshold

In an ideal image, feature particles and the background would have distinct

gray intensity levels. The process of thresholding creates a binary image in which

13



image features will appear black and the background white. In reality, the thresholded

image will contain some amount of speckle manifested as feature particles and will

have lost portions of actual particles during the filtering and thresholding process.

Image evaluation errors are inherent whenever the grey levels of the object overlap

the gray levels of the image background. The selection of a threshold value is obtained

from observation of the filtered image. ITEX/PCplus software allows the user to select

a threshold value for which the designated LUT is modified. This modification is not

made permanent until the image is mapped into frame memory, allowing the user

to rapidly iterate values to make a determination on the most appropriate threshold

value.

5. Feature Identification

Once the filtered image has been thresholded, it is ready to undergo fea-

ture identification. It is imperative that the programmed image has been previously

thresholded due to the logic of the identification algorithm. This procedure locates

all connected adjacent feature pixels and assigns feature value numbers to them.

Through this labeling process, interconnected pixels are identified as an individual

object. The total number of objects recognized serves as input for the next step

of image processing. This number is restricted to 32,767 or below based upon the

limitations imposed by the C language on integer values [Ref. 4 :p. 9].

6. Feature Sizing

The procedure of feature sizing determines both the maximum vertical and

horizontal diameters of the identified objects. The total area of the subject particles

is computed. and all these measurements are delineated in terms of microns. As

described before, a conversion factor is necessary for manipulation of the feature

particle's pixel measurements into actual physical dimensions. This constant. called

SCALE-FACTOR. is presently based upon the dimensions of a threaded screw at the

I-t1



same magnification of the captured image. The screw threads serve as a calibration

object to transform image object pixel size data into actual physical measurement

criteria. The final output of the feature sizing routine is presented in tabular form

suitable for input into the STATGRAPHICS software package, a statistical analysis

tool.

7. Histogram production

To exhibit feature size data in a histogram form for ready evaluation, the

STATGRAPHICS software package is utilized. This particular software package was

selected because it is compatible with the IBM-PC/AT system and is relatively easy

to use. Histograms produced by STATGRAPHICS are used for further statistical

analysis to determine total particle distributions of holograms.

B. PROGRAM OPTIMIZATION

The primary purpose of this thesis research was to modify existing C language

routines to make them compatible with the ITEX/PCplus software. Subsequent pro-

gram optimization was performed in support of this goal. One significant improve-

ment was the removal of all general-use functions from the main programs. Although

a general support functions program file had been created in the previous rendition.

this file had not been adequately utilized. As a result, all the main programs had

needlessly large file sizes.

The C language provides the ability to use the infinitely-abusable GO TO state-

ment. This creates a situation in which branching occurs in a deeply nested structure.

The GO TO organization may" prove effective in some instances, but it always pro-

duces confusion for the individual having the misfortune to try to modify that code

sequence. For this reason. program structures were modified to eliminate all GO TO

branch statements. thereby making code more modular and portable.

15



A menu format was developed for use with the executable programs. This

format will facilitate demonstrations of image processing and makes the routines

"user-friendly". In addition, supporting functions were devised for some of the pro-

grams to further eliminate the need for user interaction with the programs once the

selected image had been loaded and image processing regions were identified. These

modifications facilitated more rapid program execution. A more detailed discussion

of program modification specifics will occur in a succeeding section.

C. SOFTWARE DEVELOPMENT TOOLS

The Microsoft Codeview Debugger program was utilized for program develop-

ment. It requires that specific compiler directives be used during program compi-

lation. Although Codeview is an excellent developmental tool, program debugging

can become a tedious process. No program modifications can be performed while in

Codeview, and for that reason, it is not an adequate tool for what is needed for pro-

gram modules of this size. The ITEX/PCplus routines require large memory module

handlers, and few other debuggers are able to meet this requirement. Quick C version

2.0 is capable of handling large memory modules and has an online source debugger

which is more versatile than Codeview [Ref. 11]. It is recommended that in future

work with these program modules, Quick C should be included in system upgrades.

Several batch files were created for compilation and linker processes since Code-

view required special compiler directives. There are two different versions of these

files: compilation and link with debugger information, and compilation without de-

bugger information for file optimization and compaction. Listings and justifications

for these DOS Batch files are referenced in Appendix K.

16



D. PROGRAM SPECIFICS

The succeeding paragraphs discuss the programs that were developed in support

of this thesis research. These existing programs were modified to be compatible with

the ITEX/PCplus software libraries and the ImageActiopplus routines. Where at

all possible, program optimization was performed. In some cases, code had to be

completely revamped to accommodate new requirements. All source code listings are

included as appendices at the end of this document. A block flow diagram of program

usage is provided in Figure 3.1.

1. Program File thesis.h

The program header file thesis.h (Appendix A) contains all requisite library

include files, C manifest constants, and MACRO definitions as necessitated by main

programs. For code portability, it is imperative that a centralized copy of all common

declarations and definitions be maintained as the programs evolve. Therefore, any

modifications to common parameters can be performed by substitutions within this

file.

With the advent of ITEX/PCplus software, additional include files were

necessary beyond the scope of the original header file listed in Reference 4. For

example, ITEX/PC libraries require the use of the include file itexpc.h [Ref. 12:p.

1-151. This requirement has been superceded by the ITEX/PCplus software which

dictates the use of itexpfg.h and stdtyp.h include files. Not only must these include

files be listed in the header file, but to be utilized, they must also be resident in the

actual program directory [Ref. 6:p. 1-9].

The added capability of dual memory required that many of the calls to the

software libraries be altered. Additional manifest constants were needed for memory

specification. They included MEMORY. defining the type of frame memory con-

figuration. and constants necessary to define the size of the selected frame memory

17



specklexc

geof I~cFILTERING

Istt~cROUT INE S

virearry.c 
sgx

IMAGE
threshl t-c THRESHOLD

gent unc.c

FEATURE
f et-I~cIDE NT IF ICATION

FEATURE
slzeitc SIZING

STATGRAPHICS HISTOGRAM
SOFTWARE PRODUCTION

Figure 3.1: Flow Diagram of inage Processing Programs.



configuration: XSIZE, YSIZE, and DEPTH. XSIZE and YSIZE indicate respectively

the horizontal and vertical coordinates of the memory size, and DEPTH refers to the

number of bits assigned per pixel in frame memory [Ref. 6:p. 2-6].

2. Program File geofil.c

Appendix B contains the listing for geofil.c, a program based upon a geo-

metric hulling algorithm introduced in References 9 and 10. The algorithm is applied

to the image and its complement by performing comparisons between a central pixel

value and adjacent pixels in horizontal, vertical and diagonal directions. The original

geometric filter routines were adapted by Edwards [Ref. 1] from information set forth

in References 9 and 10; and Kaeser successfully adapted these to the C language [Ref.

4]. Edwards' FORTRAN filtering routine was capable of handling only a quarter of

the actual image due to memory restrictions, whereas the C language version fully

supported the entire image. A large part of the C version's success was due to the

utilization of virtual memory arrays for data processing. These arrays are stored on

disk, but they are accessed as though they are stored in memory. File constraints

within the associated operating system pose the only limitation upon the virtual array

size [Ref. 13].

Few modifications were performed on the gcofil.c program to make it com-

patible with the ITEX/PCplus software. The majority of the changes for compatibil-

ity encompassed general support functions. However, much of the C language code

was altered to attain optimum modularity. This filter program had incorporated the

use of GO TO statements to facilitate branching between the filter stepping functions.

Alterations included the removal of these subject statements and the formation of two

recursive functions. These recursive functions support program modularity and per-

mit easier modifications for future updates.

19



One common modification performed on geofil.c and its other main pro-

gram counterparts involved the declaration of the image filename and comment line

(comline). The header file used by ITEX/PC, itezpc.h, required special file type struc-

tures used in conjunction with parameter passing for SAVIM and READIM functions.

These structures consisted of strings with length 20 or 200 characters, and were clas-

sified as typedef LS20 or LS200, respectively [Ref. 12:p. 1-191. ITEX/PCplus limited

filename to 20 characters and comment lines to 200 characters, but removed the

special structure requirement. SAVIM and READIM routines now require that the

image filename and comment line be classified as pointers of type character [Ref. 6].

Consequently, all program files were altered to reflect this requirement.

3. Program File Istat.c

The program lstat.c (Appendix C) uses local statistical methods to calcu-

late a weight, k, which determines the gray level of a pixel [Refs. 9 and 101. The

mean and variance local estimates within a 5x5 window encompassing the selected

pixel determine the value of k. The k value then specifies the new gray level of the

pixel in question [Ref. 1:p. 24]. Virtual arrays again assist in the data manipulation

and storage processes.

Kaeser's version of this filtering algorithm required that the user input the

standard deviation of the image directly into the program [Ref. 41. The operator had

to obtain this value from the histogram function of the ImageAction software [Ref.

14:p. 11-9-3] before running the filter program. ImageActionplus software no longer

provides the image mean and standard deviation calculations [Ref. 5]. Consequently,

a new function, drv(stddrt,), was devised to calculate the image standard deviation

and input it directly into the filter routine without user intervention. This new

function presents a vast improvement in terms of user convenience.

20



4. Program File 2sigma.c

The 2sigma filter algorithm provides the basis for 2sigma.c (Appendix D)

and was adapted from the program introduced by Edwards [Ref. 1]. From the

standard deviation of a Gaussian distribution, it is known that 95.5% of a selected

region's pixels will be within two standard deviations of the local mean. An averaging

formula has been devised in which pixels meeting the "2sigma" criteria are averaged

for a given pixel, and those outside the range are rejected [Ref. 10). These calculations

are performed for 5x5 arrays of pixels. The program 2sigma.c utilizes virtual arrays

and the standard deviation function as well. It also has reduced size due to the

removal of all general supporting functions into the program file genfunc.c.

5. Program File threshit.c

Threshit.c (Appendix E) produces a binary version of the filtered image.

The program operator enters a threshold value which sets all pixel values above it to

WHITE (level 255), and all those below to BLACK (level 0). The user then views

the thresholded image and, if the result is not satisfactory, is given the option to

enter a new threshold limit. Threshit.c utilizes a function named threshit() which is

physically located within the gcnfunc.c program file. This organization was due to

the fact that other program files, such as frat-id.c, call the thrcshit() function.

The key to the threshold process is a function call in the ITEX/PCplus soft-

ware package called THRESHOLD. The ITEX/PC function is also named THRESH-

OLD and has the following format:

void threshold(o cut. highcut);

The lou'cut and highcut integer values defined the lower and upper boundaries of the

thresholded region. This threshold procedure could only be used oil the currently

21



selected LUT [Ref. 12:p. 7-27]. The function in ITEX/PCplus software used to set a

selected LUT to a prescribed threshold is:

void threshold(group, bank, highcut, lowcut);

where,

group specifies the LUT: RED, GREEN, BLUE, or INPUT,

bank specifies the output LUT used, in the range of 0 to 7,

highcut specifies the upper bound for the threshold, and

lowcut specifies the lower bound for the threshold.

The threshit.c program utilizes all four LUT groups and the Oth 256-byte bank to

specify a linear transform output. This specification differs significantly from the

original ITEX/PC function in the amount of versatility granted the programmer.

Any of the LUTs can be modified with this threshold command, not just the current

LUT [Ref. 6:p. 7-35]. The lowcut value must never be specified as higher than highcut

value, but these values may be made equivalent to display one intensity at level 255

(WHITE).

Once the user is satisfied with a particular image threshold, the image can

be mapped to memory. This procedure involves the use of another ITEX/PCplus

function:

int maplut(group, bank, z, y, dx, dy);

MAPLUT modifies actual memory values rather than just LUT values as THRESH-

OLD does. The group and bank variables are identical to those used in the THRESH-

OLD function, but now only the INPUT LUT is modified for mapping purposes in



threshit.c. The quantities x, y, dx, and dy refer to the horizontal and vertical coor-

dinates of the 512x512 image [Ref. 6:p. 7-171. As in the case of the THRESHOLD

function, ITEX/PC permits the user to transform only that area specified by the

current LUT. The variables group and bank are not defined in ITEX/PC MAPLUT

function [Ref. 12 :p. 7-14].

6. Program File feat-id.c

It is mandatory that an image is thresholded prior to initiating the program

feat-id.c (Appendix F). For this reason, the user is given the option within featLid.c

to threshold the image if thresholding was not completed previously. Conversion to

a feature-labeled image requires an iterative process, whereby the image is evaluated

row by row. Once this feature identification process is complete, the image can be

further processed for specific feature data.

The feat-id.c program necessitated few modifications for compatibility with

ITEX/PCpus software. Again, the more extensive changes were performed on the

general support functions. FeaLid.c used the ITEX/PCplus functions WPIXEL

and RPIXEL extensively, but these calls retained the same format as that used in

ITEX/PC software [Refs. 6 and 12].

7. Program File sizelt.c

Program sizeilt.c (Appendix G) creates an output file size.dat which con-

tains the dimensions of all image features in a format necessary for input into a sta-

tistical analysis program. Sizeilt.c relies upon pointer structures for dynamic memory

allocation of processed feature data.

A conversion factor. SCALEYACTOR. figures prominently in this sizing

algorithm. Kaeser determined this factor to be 3.7353 contingent on image calibration

[Ref. 4]. Upon subsequent runs of the sizeit.c program, however, a SCALE-FACTOR

23



of 10.0000 was necessary to achieve compatible results with Kaeser's program [Ref.

4:p. 17]. The constant term SCALE-FACTOR is defined in the header file thesis.h

and can be easily modified if required. Based upon equipment configuration during

hologram processing, the subject conversion factor is still questionable in terms of

accuracy. For this reason, an additional function was devised to determine a con-

version factor based upon user input. This function was entitled scaleQ, and its

characteristics are discussed in the section relevant to genfunc.c.

8. Program File speckle.c

To calculate the value of speckle index (SI) after each filter iteration,

specklc.c (Appendix H) is called to evaluate filtering effectiveness. This calculation

is performed upon specified dimensions of the filtered image; integer values for im-

age row and column are passed to this function from the filter routines. Values for

speckle index typically range from a maximum value of 1.0, a rare occurrence, to

a hypothetical value of 0 [Ref. l:p. 20]. No program modifications were necessary

for ITEX/PCplus compatibility. Speckle index is obtained purely from statistical

manipulations.

9. Program File vir-arry.c

Vir.arry.c (Appendix I) consists of a group of functions supporting setup

and access of the virtual disk-based array stratagem employed primarily by the filter

routines. The virtual array functions were adapted by Kaeser [Ref. 4] from Refer-

ence S. These arrays reside on disk and are accessed as though they are located in

memory. This feature overcomes the memory limitation normally corresponding to

array usage. Through the use of MACROS and pointer notation, the C programming

language provides the means of managing virtual arrays [Ref. 8]. Thcsis.h contains

the obligatory MACROS needed for structure definition. All virtual array functions

24



mandated the use of long integers for indexing purposes [Ref. 13]. Since the dimen-

sions of the actual image are defined in terms of integer values, a conversion interface

problem developed in all the filter programs. This was further complicated by the

fact that the ITEX/PCplus WPIXEL function references datum points in terms of

integer values. This function is essential for "writing" the filtered pixel values to

memory from the virtual array routines [Ref. 6:p. 5-4]. With the use of the C

language "(long)" command, the integer indices referencing pixel values within the

image can be used simultaneously to reference values within the virtual arrays with

no conversion difficulty [Ref. 15:p. 36].

10. Program File genfunc.c

The program file genfunc.c (Appendix 1) contains image processing general

support functions. These functions maintain routine evolutions occurring within the

main image processing programs. The following sections discuss functions that were

either created or modified due to the advent of the ITEX/PCplus libraries.

a. Function startit()

This function makes provisions for initial Frame Grabber board setup.

All the main function files with the exception of speckle.c and vir-arry.c access this

function. Due to the introduction of the dual memory configuration, new ITEX/PCplus

calls were required in addition to what Kaeser utilized [Ref. 4]. The SETDIM rou-

tine determines the configuration of the memory, either dual-store or single-store [R-f.

6:p. 2-6]. SELECTMEM determines which frame memory will be accessed while in

the dual-store mode. Frame memory choices consist of MEMA or MEM_B as de-

fined in the itcxpfq.h header file [Ref. 6 :p. 2-19]. DISPLAYMEM must be used in

conjunction with the SELECTMEM routine. It specifies which memory area will be

displayed and gives the user the option of writing to one image area while displaying

25



the other [Ref. 6:p. 2-20]. For the current application, MEMA is both the accessed

and displayed frame memory.

b. Function readit0

The image is read from disk storage and placed on the video monitor

via the readit0 function. Any comment associated with the image when it was stored

will be displayed at that time. The ITEX/PCplus function READIM is the key to

this procedure. The READIM call format is relatively unchanged from the ITEX/PC

version. If an error occurs when a file is being read, the function will return an error

code to identify why the operation failed. The itezpfg.h header file defines these error

code values [Ref. 6 :p. 6-5]. The standard ITEX/PC format did not make provisions

for these values in its associated header file, itexpc.h; therefore, file errors are referred

to numerically [Ref. 12 :p. 6-7]. Accordingly, the readit( function was modified to

reflect the error nomenclature.

c. Function saveitO

The saveit() function allows the user to save the image to disk memory

via the ITEX/PCplus function SAVIM. The image can be stored using compression;

although compression may, in rare cases, cause the image to occupy more disk space

than an uncompressed version. If compression is used, the file will be automatically

decompressed when read from the disk. As in the case of the READIM function.

SAVIM returns error code values if the save operation is unsuccessful. Subsequent

modifications were performed to the savcit() code to make it compatible with the

new documentation [Refs 6 and 121.

d. Function dur(stddcr)

Both program files lslal.c and 2signa.c require the computation of the

standard deviation of the image for their respective filtering algorithms. The function

26C



dev(stddev) computes this value through an iterative process utilizing the RPIXEL

function. Since the standard deviation is computed directly from the image without

user input, there is a slight increase in filter pr, - m execution times associated with

the implementation of this function.

e. Function scale(factor)

This function supports the sizeit.c program by allowing the user flex-

ibility in the determination of a scale factor used in the sizing algorithm. The user

is given the option of using the SCALE-FACTOR as delineated in the header file

thesis.h, or of entering dimensions of a calibration object. If the user decides upon

the latter, the length of the object must be entered in terms of pixels and inches.

The function will then calculate the new SCALE-FACTOR and pass this value to the

sizeit.c program.

E. SUMMARY

The modifications and improvements performed on the image processing pro-

grams were necessary to make them compatible with the environment established by

the installment of the PCVISIONplus Frame Grabber board into the IBM PC/AT.

These subject programs support all requirements for image acquisition, filtering,

thresholding and particle identification. The following chapter examines the per-

formance and verification of these programs at length.

27



IV. SOFTWARE PERFORMANCE ANALYSIS

This chapter will discuss the pertinent details concerning software performance.

The subjects of executable program size, timing analysis, and program verification

will be examined at length in the following sections. Any departures from results

obtained from the original C language programs will be appraised.

A. EXECUTABLE PROGRAM SIZE

Table 4.1 shows the comparison between executable program size of ITEX/PC

and ITEX/PCplus supported software. The size information is presented in terms of

kilobytes (KB) and was acquired via the use of the DOS command, DIR [Ref. 4].

The ITEX/PC-based programs written by Kaeser [Ref. 4] have significantly smaller

executable file sizes. This is attributed to the fact that during the LINK process,

Kaeser linked main programs to required library files only. It was not necessary to

link to the object modules of the gcnfunc.c, speckle.c, or the vir-arry.c files since all

necessary functions were appended to the end of the main program files [Ref. 4]. In

addition, the ITEX/PC function library differs from the ITEX/PCplus version, and

these differences will also impact executable file size.

TABLE 4.1: Comparisons of Executable Program Size (KB)

FILENAME ITEX/PC ITEX/PCplus
THRESHIT.EXE 31,467 63,101
FEATID.EXE 32.509 64,407
SIZEIT.EXE 46,281 65,429
2SIGMA.EXE 49,483 65.491
LSTAT.EXE 49,475 65.499
GEOFIL.EXE 49.969 66,317

28



TABLE 4.2: Comparisons of Actual Program Size (KB)

FILENAME ITEX/PC ITEX/PCplus
THRESHIT.C 5,807 1,336
FEATD.C 10,130 6,003
SIZEIT.C 11,011 7,426
2SIGMA.C 14,623 5,396
LSTAT.C 14,434 5,396
GEOFIL.C 14,888 7,916

One stated objective of this thesis was to optimize the existing C language

code. Although executable program size comparisons contradict this goal, it is shown

in Table 4.2 that actual program sizes for the ITEX/PCplus compatible programs are

substantially reduced from the original versions. Two linker options, /F and /PAC,

were initially employed to achieve more compact executable files. The use of these

options should produce more rapid execution of files and shorter program load times

[Ref. 16 :p. 185]. The /E option had been utilized by Kaeser in Reference 4, but

this file packing option may not always give satisfactory results. It can occasionally

increase file size, and this obviously reduces savings in disk space [Ref. 17:p. 268].

Upon linking program files with the /PAC and /F options, it was found that

these options did not pose an improvement over the /E option. In fact, executable

file sizes were increased. For example. the gcofi.cxc file was 73.132 KB when these

options were used in the LINK process. The /E option produced an executable file

size of 66.317 KB. All other executable files were affected similarly. Accordingly, the

/E option was utilized for the LINK procedure. Appendix K contains the listings of

the batch files used to compile and link the program files.

29



TABLE 4.3: Program Execution Times

PROGRAM TIME(SEC)
FEATURE IDENTIFICATION 809.82
FEATURE SIZING 1780.03
2SIGMA FILTER 760.55
LOCAL STATISTICS FILTER 1324.47
GEOMETRIC FILTER 3403.13

B. PROGRAM EXECUTION TIMES

The jl7res4.img library image was used to test program execution times. This

was the same image as that used by Kaeser in Reference 4, depicting an Air Force Res-

olution Target (AFRT) obscured by speckle noise. The unfiltered image jl7res4.ing

is depicted in Figure 4.1. Testing was accomplished by the use of a timer program,

timer.c, in conjunction with a DOS input file to eliminate user intervention. Previous

thesis work involved time testing of one quarter of the 512x512 image. MSFORT

versions of the programs could effectively handle only one quadrant of the full screen

image. Consequently, Kaeser conducted execution time comparisons on only one

quarter of the image [Ref. 4]. Due to the banded nature of the ITEX/PCplus frame

memory, quadrant timing tests of the image would not produce results that could be

compared with the original findings [Ref. 5]; therefore, timing analysis of the pro-

grams was performed on the entire image. The resultant execution times are listed

in Table 4.3.

C. PROGRAM VERIFICATION

To verify the results obtained from the ITEX/PCplus-based programs, two im-

ages were used from the existing image library. The jl7res4.img was again used, this

time to determine the accuracy of the filter programs. Both feaLid.c and sizfit.c were

operationally tested with the image 10wgrid.img derived from a standard calibration

30



I V, -k ..

I tltiU - ,,4

Figure 4.1" Unfiltered jl7res4.img.

image [Ref. 2]. Resultant data acquired from these images was compared to data in

Reference 4.

Speckle index value comparisons weie used to determine the effectiveness of the

filter programs. In each case, the respective filter was run through six iterations of

the full screen image, j17rcs4.img. Table 4.4 contains the tabulation of the results

acquired, and the results from the original C programs are listed in Table 4.5. A file

comparison was performed to ensure that the image used for testing was identical

to the full screen image used previously. Comparison of the data obtained from the

current iterations to data from Kaeser's programs indicates slight variations in the

speckle index values. The initial speckle index values for the two cases differ. One

possible factor attributing to this difference is the inconsistency of integer conversions

between the C language programs [Ref. 4]. The more significant measure of filter

performance is the relative decrease in speckle index upon subsequent filter iterations.

31



TABLE 4.4: Speckle Index Reduction Results Obtained from Modified
Programs

NUM 2 SIGMA L STAT. GEOMETRIC
0 0.293046 0.293046 0.293046
1 0.196282 0.180061 0.218982
2 0.144286 0.125157 0.174153
3 0.115754 0.099063 0.143760
4 0.098420 0.084035 0.121202
5 0.087068 0.074063 0.103756
6 0.079042 0.066919 0.089894

TABLE 4.5: Speckle Index Reduction Results (Ref. 4)

NUM 2 SIGMA L STAT. GEOMETRIC
0 0.304005 0.304005 0.304005
1 0.153767 0.194121 0.224875
2 0.098967 0.151951 0.178222
3 0.074415 0.129769 0.146152
4 0.060615 0.115938 0.122347
5 0.051691 0.106372 0.103983
6 0.045354 0.099367 0.089425

Therefore, the dissimilarities of initial speckle index value are not detrimental to filter

function, and all filter programs produce desirable reduction of speckle. Consequently,

all evidence indicates that the ITEX/PCplus-based filter programs function correctly

Figure 4.2 illustrates j17res4.img after six iterations of the geometric filter.

The results obtained from the feat-id.c and sizeit.c programs were identical to

those obtained from Kaeser's programs [Ref. 4]. The SCALE-FACTOR entry in the

thcsis.h header file had to be modified in order for the output files from the respective

sizing programs to be congruent. Otherwise, the program files produced the same

outputs as the original C language programs.

32



Figure 4.2: jllrcs4img Image After Six Iterations of the Geometric Filter.

3:3



V. CONCLUSIONS

A. SUMMARY OF FINDINGS

This thesis accomplished all major objectives as set forth in the introductory

chapter. No major problems were anticipated with the integration of the ITEX/PCplus

libraries and the COMPAQ 386/20 computer system. Due to a memory conflict cre-

ated within the COMPAQ, the PCVISIONplus had to be installed into the IBM

PC/AT to complete C program modifications. Therefore, the bulk of this research

was conducted on the PC/AT used in previous work. Although several of the pro-

grams produced in Kaeser's research [Ref. 4] were modified with no major difficulties,

type definitions created major faults in the filter routines which had to be resolved.

It was the goal of this thesis to improve program portability and optimization. For

the most part, this goal was achieved. Executable program size did increase, but this

was the result of program structure changes and library modifications introduced by

the ITEX/Pcplus system upgrade.

B. FUTURE WORK

Further verification testing is necessary to sufficiently demonstrate the operation

of the C language programs. A minimal amount of experimentation was accomplished

to compare the acquired results with data obtained from the previous version of the

programs. Further testing is mandatory for complete program validation and should

be pursued in subsequent thesis research prior to porting the programs over to other

computer systems. Some effort was expended on the application of the NDP C-386

compiler to eliminate the need for virtual arrays for data processing. These efforts

were largely unsuccessful due to the incompatibility of the ITEX/PCpIus libraries

34



with the subject compiler system. This area of research could be further investigated

for future thesis work. The following topics may also be considered for future work:

e Utilization of Macintosh board for image processing.

* Measurement of image particles utilizing a scanning electron microscope for
sizing routine validation.

* Further validation of image measurements using new calibration objects.

* Integration of SUN workstations for image processing.

35



APPENDIX A: PROGRAM HEADER FILE:
thesis.h

/s PURPOSE:
To completely list all necessary include files, manifest constants,

and MACRO definitions required by all the programs within this
package. Any changes to constants in thesis.h will guarantee
redefinition of those parameters throughout the main files.

/* Include files for use with ITEXPC programs
*/

#include <stdio.h>
#include <stdlib.h>

#include <math.h>
#include <malloc.h>

#include <graph.h>
#include <conio.h>

#include "itexpfg.h"

#include "stdtyp.h"

/* Program constants used in the C program modules of the ITEXPC
Optical System used for Rocket motor Hologram analysis. */

/* Intial ITEXPC Board Jumper Settings e/

#define MEMBASE OxDOOOOL /* Itex board base memory start address */
#define REGBASE Ox300 /* Itex board base register start address 5/

#define MEMORY DUAL /* Itex board memory type '/

/* ITEXPC initial AOI (area of interest) settings 5/

#define IXS 0

#define IYS 0
#define IROW 480
*define ICOL 512
#define COLOR 150
$define XSIZE 512
#define YSIZE 512

#define DEPTH 8

/* ItexPC LUT (Look Up Table) Variables */

36



/* Threshold Limits e/
#define LOWEST 0 /* Equates to Black for lowcut value */
*define HIGHEST 255 /e Equates to White for highcut value e/
*define BLACK 0
#define WHITE 255

/* Filter array sizes and limits e/

$define SIUM 25
*define HUM 9
*define HIGH 254

Idefine LOW 0

/s Sizing magnification factor used in sizing program ,/

*define SCALE-FACTOR 10.000000 /* Based on ( 317.6 / 85 ) */

/* Virtual array Header File Definitions C,

*define header 7

/* Virtual Array Control Block typedef C/

typedef struct {

FILE *file; /* pointer to file control block C/

long size; /* number or array elements in file C/
int elsize; /* number or bytes in each element o/

char *buffer; /* pointer to array buffer */
int buf.elsize; /* size of element in buffer including index */
int bufrsize; /* number of elements in buffer */
char *blank-rec; /* pointer to initialization record */
/* used for extending file CI

}

VACB /* Virtual Array control block type name */

/* Virtual Array Access Prototypes */

int init-varray(char *filename,int rec-size,char filchar);
VACB *open-v-array(char *filenameint buffer-size);
void close-v.array(VACB *v-array);

void *access-v-rec(VACB *v-array,long index);

/I Virtual Array Access Macros */

#define VREC(y) (items *)access-v-rec(item-array.y))

*define gdesc(y) VREC(y)->vgdesc
*define G(x,y) VREC(y)->v-gdesc[x]

/* Virtual Array element structure typedef C/

37



typodef struct{
un. igned char v-gdesc (ICOL);

itus;

3S



APPENDIX B: PROGRAM FILE: geofil.c

/*PURPOSE : Provides for filtering an image using the geometric filter

algorithm. This program processes the image and provides

for the operator to select the number of iterations.

The area of filtering for the image is controlled by the

operator by keyboard input of number of ROWS and COLS to
process. Program will allow for a Maximum input of 480 ros

and 512 cols with a minimum of I row and 1 column.

The resulting filtered image pixel value is stored on

disk in a virtual array, that is written to the image
processing screen when all calculations are complete.

Total calculation time for a 512x480 image is 3403.13 sec.

DISK SPACE REQUIRED for virtual array storage is 250 KB minimum
available on the disk at start of the routine.

*/

#include "thesis.h"

char filename[20], comline[200];

int srow, scol, times, row, col;
main()

int flag;

extern int row, col, srow, scol, times;

printf("\n\tReady to Load IMAGE FILE?...Yes (y) N Mo (n) ");

flag=getcho);

if(flag == 'Y'II flag == 'y')

startito;
readito;

}

if( flag == 'IN' I flag == 'n' ) return(O);

geti("\n\nEnter number of rows (Max=480) to use in SPECKLE CALC ",&srow);

geti("\nEnter number of columns (Max=512) to us in SPECKLE CALC ",kscol);
geti("\n\n\nEnter number of filter iterations to do...",&times);

geti("\nEnter the number of IMAGE rows (MAX = 480) to FILTER ",,row);

geti("\nEnter the number of IMAGE cols (MAX = 512) to FILTER ",,¢ol);

39



switch(times)
{

case 0:
speckle();
printf("\nSave image to Disk File?..Yes (y) / No (n) ");
flag=getch();
ifCflag =: 'Y'II flag == 'y') savoito);
exit(l);

break;

case 1:
break;

default:
break;

}

do
{

speckle();

geofil();
I

while(times == 0);
printf("\nSave image to Disk File?..Yes (y) / No (n) ");

flaggetcho;

if(flag = 'Y'1I flag == 'y') saveit();

/* geometric filter algorithm */

geofilO)
{

VACB *item-array;

extern int row, col, times;
int fl, f2, gl, g2, g3, x, y;

int a, b, c, d, pixel, calls;

/* create a virtual array for the array of filtered

pixel values the size of the image ( 480xS12 ) ./

init-v-array("ITEMS.VAR",sizeof(items),NULL);

/* open the virtual array, reserve buffer space for 100 elements */

item-array = open-v-array("ITEMS.VAR",100);

/* start local statistic filter routine */

if( row > NROW ) row = NROW;
ifC col > NCOL ) col = NCOL;

40



for(y ; y < ro ; y++) /* Zero the initial array */
{

for( x = 1 ; x < col ; x++ )
{

G(((long)x).((long)y)) = KULL;
}

}
for(calls = times; calls != 0; calls--)
{

c =4;
printf("\n\n\tFilter Running --> %d Runs after this one!.. .\ncalls-l);
for( ; c ; )

switch(c)
{

case 4

a=1; b=O; c=3; d=;
printf("\nc = 3 ");
tl(a,b.c,d,item array);

break;

case 3:

a=O;
b=1;

c=2;
printf("\nc = 3 ");

tl(ab,c,d,itemarray);

break;

case 2:

a=1;

b=1;

c=1;
printf("\nc =2 );
tl(a,b,cd,itemarray);

break;

case 1:

a=1;
b=-1;

c=O;

printf("\nc = 1 ");
tI(a,b.c,d,itemarray);
printf("\nc = 0 END");
speckleo;

break;

41



default break;

/s close the virtual array */
close-v-array(itearray);

/* subroutine for geofil for steps I and 2 ./

tI(a,b,c,ditem-array)

int a, b, c, d;
VACB *iteonarray;

int fl, f2, gI, g2, g3;

int pixel, x, y;
long xl, yl;
extern mt rowcol,tines;

for( y I ; y < row-I ; y++ )

for( x = I ; x < col-I ; x++ )

xl = ((long) x);
yl = ((long) y);
fl = rpixel( x,y );
f2 = rpixel( x-a,y-b );
G(xl,yl)= max( fl, min( f2-1, f1+1 ) );

}
I
printf(" step 1");
for( y = I ; y < row-I ; y++ )
{

for( x I ; x < col-1 ; x++ )
{

xl ((long) x);

yi ((long) y);
gl G( xlyl);
g2 G(((long)(x-a)),((long)(y-b)));
g3 = G(((long)(x+a)),((long)(y+b)));

pixel = max( gl, min( g2, min( g1+1, g3+l ) ) );
vpixel(x,y.pixel);

printf(" step 2");

if( d==l )
{

a= -a;
b= -b;

42



d= 0;
tI(a~b,c~d,item.array);

else if( d:0 )

d=1;
t2Ca,b,c,d~item-.array);
return;

/* subroutine for geof il for steps 3 and 4 *
t2Ca~b~c,d, item-.array)

int a, b, c, d;
VACB *item-array;

int f1, f2, gI, g2. g3;
int X, y, pixel;
long xl, yl;
extern mnt row, col, times;

for( y = 1 ;y < row-I ; y++)

for( x 1 ; x < col-I ; x++)

X1 ((ong) X);
yi ((ong) y);
fl rpixel( x,y )
12 rpixel( x-a,y-b )
G(xl,yl)= min( fl. max( 12-1, f1+1 ))

printf(" step 3');
for( y = 1 ; y < row-I ; y+)

for( x =1 ; x < col-I ;X++)

x{Mng )
yl ((long) y);

gi G( xl,yl);
g2 G(((long)(x-a)),((long)(y-b)));
g3 G(((long)Cx+a)),((long)(y+b)));
pixel = max( gI, min( g2, min( gi+1, g3+1 ))
wpixel~x,y,pixel);

printf(" step 4");
if( d==l

-13



a= -a;
b= -b;
d= 0;
t2(a,b,c,d, itsarray);

}

else if( d==O )

d = 1;
return;

4-1



APPENDIX C: PROGRAM FILE: lstat.c

/*PURPOSE Provides for filtering an image using the local statistical
algorithm. This program processes the image by using a local
SxS array of pixels to calculate a statistical value for the
central pixel of the local array.

The area of filtering for the image is controlled by the
operator by keyboard input of number of ROWS and COLS to
process. Program will allow for a Maximum input of 480 rows
and 512 cols with a minimum of 1 row and 1 column. Program
also requires the image Std. Dev. as calculated by the genfunc.c

Program. The resulting filtered image pixel value is stored on

disk in a virtual array, that is written to the image processing

screen when all calculations are complete.

Total calculation time for a 612x480 image is 1324.47 sec.

DISK SPACE REQUIRED for virtual array storage is 260 FB
minimum available on the disk at the start of the routine.

*/

#include "thesis.h"

char filename[20], comline[200);

int row, col, srow, scol, times;

float devl;

maino)

int flag;

extern int row, col, times;

printf("\n\tReady to Load IMAGE FILE?.. .Yes (y) / No (n) ");

flag=getcho;
if(flag == 'Y'II flag == 'y')

startito);
readito;

}

if(flag == 'I' II flag == In') return(O);

geti("\n\nEnter number of rows (Kax=480) to use in SPECKLE CALC ",Asrow);

geti("\nEnter number of columns (Max=512) to us in SPECKLE CALC ",&scol);

geti("\n\n\nEnter number of filter iterations to do...",ktimes);

.15



geti("\nEnter the number of IMAGE rows (AIx = 480) to FILTER ",&row);
getiC\nEnter the number of IMAGE cola (MAX =512) to FILTER :".col);

dev(kdevl);
printfC\nThe standard deviation for this image is %.2f\n",devl);

do
{

speckle();

lstato);

while(times == 0);

printf('nSave image to Disk File?..Yes (y) / No (n) ");
flag=getcho;

if(flag == 'Y'II flag == 'y') saveito;

/* .....................................................................* /

lstato)

VACB *item-array;

long xt,yl;

extern float devi;
extern int row, col, times, arow, scol;

register int a, , nn;
int pixel,a,b,x,y,calls;
float 8uml, Sum2, aver, lvar, tvar;
float lmean, lmean2, stddev, stddev2, k;
int ldata[SUMJ; /* SlUM defined in Header file */

/* create a virtual array for the array of filtered

pixel values the size of the image ( 480x512 ) 5/

init.varray("ITEMS.VAR",sizeof(items),IULL);

/s open the virtual array, reserve buffer space for 100 elements */

item-array = open.varray("ITES.VAR",100);

/* start local statistic filter routine */

if( row > WROW ) row = IROW;
if( col > NCOL ) col = NCOL;

stddev devl / 255.0 ; /* Normalize deviation value */

stddev2 = stddev * stddev

for(calls = times; calls != 0; calls--) {
printf("\n\n\tFilter Running --> Yd Runs after this one!..\n",calls-1);

46



for Cy =2 ; y < row - 2 ; y++)

for (x = 2 ; x < col - 2 ;x++)

pixel =rpixel( x.y )
sumi 0;
sum2 =0;

nn =:0;

for( n = y - 2 ; n < y + 3 ;n++)

for( m = x - 2 ;a < x + 3 a ++

ldata~nnJ rpixel( u,n )
suml += ldata~n;

imean suml / SlUM
lmean2 =imean * imean
for( n 0 ; a < SNUM ;nn++)

avar = (ldata~nn] - mean )*CIdataCan) lmesxn)
sum2 += sar;

ivar =sum2 /SNUM
tvar = fabsC C (var + lmean2) /(stddev2 + 1) )-lmean2)
k =tvar / ( stddev2 * lmean2 + tvar)
X1 ((ong) X);
yl CMong) Y);
GC xl,yl I (int) ( imean + k *Cpixel - mean))

/* write contents of the G array to image screen *

printiC"\n\a\tWriting filtered image to screen...")

for( b =2 ;b < row - 2 ;b++)

for( a =2 ; a < col -2 ; a++)

wpixeiC a,b,G(((long)a),((long)b)));

speckleo;

/* close the virtual array *



clos..v-.array( itemaxray);

48



APPENDIX D: PROGRAM FILE: 2sigma.c

/*PURPOSE Provides for filtering an image using a 2-sigma statistical

algorithm. This program processes the image by using a local
5x5 array of pixels to calculate a statistical value for the
central pixel of the local array. The algorithm will eliminate
pixels from the sumation that are greater than 2-Sigma in
value from that of the central pixel.

The area of filtering for the image is controlled by the
operator by keyboard input of number of ROWS and COLS to
process. Program will allow for a Maximum input of 480 rows
and 512 cols with a Minimum of 1 row and I column. Program
also requires the image Standard deviation as obtained using
genfunc.c program. The resulting filtered pixel value is
stored on disk in a virtual array and written to screen later.

Total calculation time for a 512x480 image is 760.55 sec

DISK SPACE REQUIRED for virtual array storage is 260 KB
minimum available on the disk at start of the routine.

*/
#include "thesis.h"

char filename[20), comline[200);
int row, col,t imes, srow, scol;
float devl;

main()

int flag;
extern int row, col, times;

printf("\n\tReady to Load IMAGE FILE from disk?.. .Yes (y) / No (n) ");
flag=getcho;
if(flag == 'Y'11 flag == 'y')

startitC);
readito);

if(flag == 'I' II flag == 'n') return(O);
geti("\n\nEnter number of rows (Max=480) to use in SPECKLE CALC ",ksrow);
geti("\nEnter number of colum (Max=S12) to us in SPECKLE CALC : ",scol);
geti("\n\n\nEnter number of filter iterations to do...",&times);

49



geti("\nEnter the number of IMAGE rows (MAX = 480) to FILTER ",&row);

gati("\nEnter the number of IMAGE cola (MAX = 512) to FILTER ".col);
dev(bdevl);
printf("\n\tThe standard deviation for this image is: %.2f\n",devl);

do
{
speckle();
sigma();

while( times ==0 );

printf("\nSave image to Disk File?..Yes (y) / No (n) ");
tlagzgetcho;
if(flag == 'Y'II flag == 'y') saveitO;

sigmao)
{

VACB *item..array;
extern int row, col, times, srow, scol;

extern float dev;
long xl, yl;
register int a, n, nn;
int pixel, suml, sum2, delta, high;
int low, a, b, x, y, calls;
float hvar, lvar, stddev;
int ldata[SIUM]; /* SWUN defined in Header file */

/* create a virtual array for the array of filtered
pixel values the size of the image ( 512x480 ) */

init-v-array("ITENS.VAR",sizeof(items),IULL);

/* open the virtual array, reserve buffer space for 100 elements */

item-array = openv-array("ITEMS.VAR",100);

/* start local statistic filter routine */

if( row > IROW ) row = IROW;
if( col > ECOL ) col = ICOL;

stddev = devl / 255.0 ; /s Normalize deviation value *1
hvar = 1. + 2. * stddev ; /* find high and low sigma */
Ivar = 1. - 2. * stddev

for (calls times; calls != 0; calls--) {
printf("\n\n\tFilter running --> %d Runs after this one'...\n",calls-1);

50



for C y = 2 ; y < row - 2 ; y++)
{

for ( x = 2 ; x < col - 2 ; x++)
{

pixel = rpixel( x,y );
suml 0;
sum2 = 0;
nn = 0;
delta = 0;
high = (int)(hvar * pixel);

low (int)(lvar * pixel);

for( n = y - 2 ; n < y + 3 ; n++ )
{

for( m = - 2 ; m < x + 3 ; m++ )
{

xi ((long) x);
yl = ((long) y);

ldata[nn] = rpixel( u~n );
if( ( low <= ldata[nn] ) l ( idata[nn] <= high ) )
{

suml += ldata[nn];
delta++;

}
nn++;

if(delta <= 2) /* correct shot noise -- 4 neighbor average */
{

sum2 = rpixel(x,y-1)+rpixel(x,y+1)+rpixel(x-ly)+rpixel(x+l,y) );
G( xI,yI ) (pixel + sum2) / 5;
continue;

)) G( xI,yI suml / delta;

printf("\n\t~riting filtered image to screen...");

for( b = 2 ; b < row - 2 ; b++ )
{

for( a 2 ; a < col - 2 ; a++ )
wpixel( a,b,G(((long)a),((long)b)) );

}

speckle() ;

/* close the virtual array */

.3



} l s - -r a~ i e -r a)

52



APPENDIX E: PROGRAM FILE: threshit.c

/*PURPOSE : This program thresholds the image on screen by taking
an operator input value and forcing all image pixel
values above the threshold value to the value of BLACK
and all those below the value to the WHITE value.

C Background == WHITE ; Feature == BLACK )

*/

#include "thesis.h"

char filename[20J, comline[200);
int srow, scol;

maino)
{

int flag;

printf("\nThis program will threshold the input image desired.");
printf("\n\n\tReady to Load Image?.. Yes (y) / No (n) ");
flag=getcho);
if(flag == 'Y'II flag-= 'y')

startito;

readito;
}

if(flag == 'I'll flag == 'n')
{

initialize ();

return(o);
}

printf("\n\n\tTHRESHOLD the image?,.. Yes (y) / No (n) ");
flag = getcho;

if(flag == 'Y'II flag == 'y') threshito);

53



APPENDIX F: PROGRAM HEADER FILE:
feat-id.c

/*PURPOSE Labels and identifies each feature in an image on the ITEX
system. Reads pixel-by-pixel and groups the objects by
assigning a unique ID number to each feature or object so
that they can be processed by other routines.

The ID routine requires a thresholded on image screen image
or input of a previously saved thresholded image from disk or
input from disk and then thresholding. This program module
includes an optional call to threshold if desired.

C Background = WHITE ; Feature =- BLACK )

*/

#include "thesis.h"

char filename[20), conline[200);
int arow, scol;

main ()

int flag;

printf("\n\aYou MUST USE A THRESHOLDED IMAGE for this Program! !");
printf("\n\n\tReady to Load image from disk?.. .Yes (y) / No (n) ");
flag=getcho;
if(flag == 'Y'II flag == 'y')

startito;
readit();

if(flag == 'I' If flag == 'n' ) return(O);

printf("\n\n\tleed to THRESHOLD the image?.. .Yes (y) N lo (n) ";
flag = getcho);
if(flag == 'Y'11 flag == 'y') thresho);

feat-ido;

printf("\n\nSave image to Disk File?..Yes (y) / No (n) ');
flag=getcho);

if(flag == 'Y'II flag-= 'y') saveito;

.51



/* image feature identification algorithm *

feat-.ido)

register int X, y;
int a, x1, yl, x2, y2, x3, y3, x4, y4;
int fid = 0;
int gid = 0;
int temp-.fid = 0;
int teap-.gid = 0;
mnt maifi, ni, n2, nia, nib, nic, kk, kkl, nnl;

printfC"\n\n\tSTEP ONE in Progress...)

forC y = 1I y C NOW ; y++

for( x 0 ; x < ICOL ;x++)

Wf rpixel(x,y) ==WHITE ) continue;
ift x == 0)

upixeiC x~y~fid )
continue;

ifW rpixel( x-l,y )!WHITE))

upixeiC z,y,rpixel(x-1,y) )
continue;

ifC rpixel(x,y-1) != WHITE)

upixeiC x,y,rpixelC x,y-1 ))
continue;

wpixel( x,y,fid )
a = x + 1;

while~i)

if( rpixel( a,y ) =WHITE)

upixeiC x,y,fid )
step( &fid,kgid )
break;

if( rpixel~a,y-1) !=WHITE)

upixelC x,y,rpixel( a,y-1 ))
break;



a += 1;
}

/* end x - for */
} /* end y -fore/

lid += gid*BIGH;

printfC"\\n\tSTRT STEP TWO... ";
printf("\n\nEnter the BEST estimate of the max feature length");
getiC"\n\nlt's Better to be too large than too small!!",umaxfl);

printf("\n\n\tRUIING");

for( y = I ; y < IROW ; y++ )

for( x = 1 ; x < ICOL ; x++ )

nl = rpixel( x,y );
n2 = rpixel( x.y-1 );
if ( ni 11 n2 == WHITE ) [[ (nl n2 )) continue;

x3 = x - maxfl;

x4 = x + maxfl;

y3 = y - maxfl;
y4 = y + maxfl;

ifW x3 < LOW) x3 = LOW;

if( x4 > ECOL ) x4 = ICOL;
if( y3 < LOW) y3 = LOW;
if( y4 > IROW ) y4 = IROW;

for ( yl = y3 ; yl < y4 ; yl++ )
{

for ( xl = x3 ; xl < x4 ; xl++)

nla = rpixel( xlyl );

if C nla == WHITE) continue;
if C nla == n1 ) wpixel( xl,yl,n2 );

lid -= 1;

printf("\n\n\tSTEP THREE in Progress");

for ( y =1 ; y < IROW ; y++ )
{

for( x = 1 ; x < NCOL ; x++ )

kk = rpixel( x,y );
if( kk == WHITE ) continue;

56i



kkl = k-k;
rni = temp-tid + teup-.gid * HIGH;
if( kki nnl ) continue;
if( (k-ki nni) ( -350 ) kk- = k-k + 508;
if( (kk- - 0i >= -350 At (kki - nnl) < -150)

kk-i k-k + 254;
if( kk-i' nni

*x3 x - maxfl;
x4 =x + maxfl;
y4 =y + maxfl;

if( x3 < 0) x3 LOW;
if( x4 > NCOL-1 )x4 = ICOL -1;
if( y4 > IROW-1 )y4 = NROW -1;

for( yl = y ;yl < y4 ;yi++)

for( xl x 3 ; xl < x4 ; xl++)

nic =rpixelC xi~yl )
if( Cnic == WHITE ) I uc 1=kk )continue;
upixeiC xi~yl,temp-.fid )

step( ktemp-jid,temp-gid )

printf("\n\n\t\tFEATURE COUNT IS: Vd",fid);
maplutC INPUT, 0, IXS, IYS, NCOL, KROW )

.57



APPENDIX G: PROGRAM FILE: sizeit.c

/*PURPOSE :This routine uses an existing or saved image that has been

thresholded and then ID'd with the ID Algorithm. The output

of this program is a tabular output of the calculated Area,

I-chord, and Y-chord that is suitable for input to a

Statistical Analysis Program. Output file is written to

default drive as SIZE.DAT.

CBackground ==WHITE ; Feature == BUACK)

#include 'thesis .h"

char filename [20). comline [200];

int arow, scol;

mainC)

mnt flag;

printfC'\n\aUSE IKAGE processed by the FEATURE ID program!!");

printfC"\n\tReady to Load ID'd image from disk?... .Yes Cy)/ No (n) )

flaggetchoC;

if(flag =='Y'II flag == y)

startito);
readitoC;

if( flag ' N' 11 flag == n, ) returnCO);
initialize 0;
size..it0;

printf('\n\tSave image to Disk File?... .Yes (y)/ No Cn)")

flag~getcho;

if(flag == 'Y'II flag =='y') saveito;

/* image feature sizing algorithm *

size-.ito)

register mnt nn, X, y, xa, ya, xb, yb;
mnt j, ip, ipa, ipb, xi, yl, x2, y2, maxfl, nun;



int xmax, yax, xain, mfin maxarea, inarea;
int xflag=O;
int yflag=O;
int aflag=O;
float area, xchord, ychord, factor;
float fimax, fymax, fxmin, fyain, fuaxarea, fainarea;
float c1_1, cf_2, nag;
long *aptr;
long *xptr;
long *yptr;
long *stop;
FILE *featdata;

geti("\nEnter the number of Features",knum);
getf("\nEnter Magnification Factor",kmag);
getiC\nEnter the Maximum Feature Length",&maxfl);

/* Set initial test min/max values */

xmax = 0;

ymax = 0;
maxarea = 0;
xain = 512;
yAin = 512;
minarea = 512;

/* Dynamically allocate memory space for the number of
features entered by the operator.

Note: This eliminates the need to declare large arrays
for these values and allows maximum number of features */

xptr = ( long *) calloc( num ,sizeof(long));
yptr = ( long *) calloc( num ,sizeof(long));
aptr = ( long *) calloc( num ,sizeof(long));

/* Check for successfull memory allocation */

ifC !xptr 11 !yptr 11 !aptr )
{

printf("\nOut of Memory!!! \n");
printf('\nYou may have entered too many features.\n");
printf("\nCorrect problem and try again.");
exit(O);

/* Calculate Magnification Constants */

scale(kfactor);
cfl =( factor / mag );
cf_2 = ( cf- * cfl );

.39



/* Above Conversion factor converts size to microns
and is related to the input magnification for the
hologram. The defined " SCALE-FACTOR " constant
value must be set for the proper value based on the
equipment set up during actual image aquisition.
The constant term SCALE-FACTOR is defined in the
leader File THESIS.H

*/

/* Begin Sizing Routine e/

printf('\n\n\tStarting to SIZE!...";

nn = 0; /* Feature number counter */

for( y = 0 ; y < IROW ; y++ )

if( an == nun )break; /* Quit when all features sized */
for( x = 0 ; x < WCOL ; x++ )

ip = rpixel(xy);
ifC (ip WHITE) I (ip == BLACK) )continue;
if( n == nun )break; /* Quit when all features sized */

xl = x - maxfl; /* Set up sizing Box */

y =y;
x2 = x + maxfl;
y2 = y + maxfl;

ifW xl < LOW) xl = LOW;
if( yl < LOW) yl = LOW;
if( x2 > ICOL ) x2 = ICOL;
if( y2 > DROW ) y2 = XROW;

for( ya = yl ; ya < y2 ; ya++ )
{

for( xa = xl ; xa < x2 ; xa++ )
{

ipa = rpixel(xa,ya);
ifW ipa != ip )continue;

aflag++;
xflag++;

}

if( xflag > *(xptr + nn ) ) *(xptr + nn) = xflag;
xflag = 0;

}

*(aptr + nn) = aflag;
aflag = 0;

60



for( xb = xl ; xb < x2 ; xb++)
{

for( yb = yl ; yb < y2 ; yb++ )
{

ipb = rpixel(xbyb);
if( ipb != ip ) continue;

yflag++;

vpixel(xbyb,BLCK);
}
if( yflag > *(yptr + nn ) ) *(yptr + nn) = yflag;
yflag = 0;

/* Calculate Kin/Max values */

zuax = max( xmax, *(xptr + nn) );
ymax = max( ymax, *(yptr + nn) );
maxarea = max( maxarea, *(aptr + nn) )
xmin = min( xain, *(xptr + nn) ) ;
ymin = min( ymin, *(yptr + nn) ) ;
minarea = min( minarea, *(aptr + nn) )

nn++; /* increment counter */
printf("\n\n\tFeature %d complete...1",nn);

/* .... end initial x/y for loop .. .

/* output data section - */

printf("\n\a Sending output data to screen and FILE SIZE.DAT !");
/* .aito; */

if( ( featdata = fopen("size.dat","w") ) NULL )
{

printf("CANNOT Open output file %s\n", *featdata);

return(1);
}

printf(" ID NO AREA X-Width Y-Width \n");

for( j = 0 ; j < num ; j++ )
{

fprintf( featdata,"%lOd %10.3f %10.3f %10.3f\n", j+1, *(aptr + j) * cf2,
*(xptr + j) * cfl, *(yptr + j) * cf-l );

printf("\nlOd %10.3f %10.3f %10.3f ", j+1, *(aptr + j) * cf_2,
*(xptr + j) * cf-1, *(yptr + j) * cfl );

/* This section can be used to put total information on bottom of data file
if desired. File written now to be used with STATGRAPHICS */

61



1* prutf(featdata,'\n\n\nMax X-chord= %f Max Y-chordz %f Max Area= .1
xmax*cfl .yaax*ctl1 .axarea*cl .2);
fprintf(featdata,"\nNun X-chord= %f1 Mini Y-chord= %f Mini Area= %f1
xmin*c-l ,ymin*cl1,munareaec..2); *

printf("\n\n\nIax X-chordz %1 Max Y-chord= %f Max Area= %I1
xmax*cfl..1 ymax*c1...1.aaxarea*cl..2);
printfQ'Vdlun 1-chord Vf Min Y-chord= %1 Min Irea= %.1
xnin*c-l ymin*cl,ainarea*c1..2);

/* Close open file and free allocated memory *

tclose~featdata);
fre. (xptr);
fre(yptr);
fre. Captr);

62



APPENDIX H: PROGRAM FILE: speckle.c

/*PURPOSE : Provides for calculating the speckle index of an image.

The resulting value is used as a measure to evaluate the
sucess of filtering an image to reduce the speckle noise.
This routine is called in all filter algorithms.

-- > OPERATOR must enter a Number of ROWS and COLUMNS
THE PROGRAM uses to calclate the speckle index.

ROWS ---> Maximum = 480 Minimum = I
COLS ---> Maximum = 512 Minimum = I

*/

#include "thesis.h"

speckle()
{

extern int srow, scol;
int m, n, x, y, nn;
long smax, smin;
long sdata [UM);

unsigned long deviation, ssum;

float smean, slocal, stotal, tot;
float spklindex;

if( srow >= NROW ) srow = IROW;
if( scol >= NCOL ) scol = NCOL;

tot = (long)srow * scol;

/* Commence calculation */

printf("\n\n\tCalculating Speckle INDEX...");

for ( n = I ; n < srow-2 ; n++)
{

for ( i ; m < scol-2 ; m++)

smax = 0;
smin = 260;
ssUm = 0;

nn = 0;

(13



for( y = ( n-i ) ; y < (n 2) ; y+ )

for( x = C r-i ) ; m ( a+2 ) ; x++)

data[nn] rpixol( x,y );
sun += (long)sdata(nn];
if( smax < sdata[nn] ) smax = adata[nn];
if( sain > sdata[nn] ) smin = sdata[nn];
nn++;

deviation = smax - smin;

ifW ssum 0 ) Sman 1;

smean = su / NUN ;
slocal = (float)deviation / Sman;
stotal += slocal;

}

spklindex = stotal / tot;

printf("\n\n\tThe Calculated .d by %d speckle index is %I ",srow.scolspklindex);

/* .......... END Speckle Function ................................... */



APPENDIX I: PROGRAM FILE: vir-arry.c

/*PURPOSE : These functions provide for the setup of a disk drive virtual

array that can be indexed as if it were in the calling

programs data storage area. The routines provide for disk

file access when required to retrieve data elements from the

array. This allows the size of a declared array to be limited

only by the amount of DISK SPACE available. See "thesis.h"

header file for setup and MACRO routines that support these

functions. Also program lstat.c fully implements the array

routines.

*/

#include "thesis.h"

/* Virtual Array Access Routines */

jnt init-v-array(filename~rec-size,filchar)
char *filename, filchar;

ant recsize;

long size;
FILE *f;

f = fopen(filename,"b");

if (f != TULL)

size = 0;
fvrite(size,4,1,f); /* write array size of zero */

fwrite(trec-size,2,1,f); /* and array element size */
fwrite(Cfilchar,l,l,f); /* and fill char

fclose(f); /* to file header */

return();

else
return(NULL);

VACB *open-v.array(filename,buffer.size)

char *filename;
int buffer-size;
{

VACB ev-array;

char *buf.ptr;

int i;

char filchar;

65



I. allocate virtual array control block *

v-array = (VACH 0) nalloc(sizeofCVACB));
if Cv-.axray == NULL) returu(VuLL);

/* open virtual array file *

v-.array-file = fopen~f ilename, "r+b);
if (v-.array->file == NULL)

free Cv..array);
return (lULL);

/* get array size and element size for control block a

fread~kv-.aray->size,4,1I,v-.array->file);
freadCkv-~array->lsize,2,1 .v-.array->file);
freadCkfilchar, 1 ,1,v-.array->file);
v-.array->buf..eluize =v..array->elsize + 4;

/* allocate buff er a

v-.array->buffer = (char a) mallocv-.array->buf-.elsize ( buffer-s.ize + 1)
if Cv.array-buffer == NULL)

Iclose~v-.array->file);
freev-.array);
return (NULL);

v-.array->buf-size = buffer-.size;

/* set up blank..rec using the fill character in array header *
/* for initializing now array elements */

buf.-ptr = v..array->buffer + v-.array->buf-.elsize * v..array->buf..size;
v-.array->blank-.rec = buf-.ptr + 4;
for Ci = 0; i < v-.array->buf-.elsize; i++)

*buf-.ptr++ =filchar;

/* set record index negative for all buffer elements a

buf-ptr =v-.array->buffer;
for Ci 0; i < v.array->buf-size; i++)

*((ong a)buf-.ptr) = -IL;
buf..ptr += v-.array->buf-elsize;

return(v-array);



void clos..-v-.array~v-.array)
VACB Ov-array;

imt i;
char *but-ptr;
long rec-index, file..ofuet;

buf...ptr = v-.array->buffIor;

/* flush buffer */

for Ci = 0; 1 < v-.array->buf-.size; i++)

/* check each element index *
/* if element present; write it to disk o

rec-index = *((ong *)buf-.ptr);
if (rec-.index >= 0)

file-offset = header + roc-index * v-.array->elsize;
fseek~v..array->filefile-.offset,O);
fwrite~buf-ptr + 4, v-array->elsize,1, v-.array->file);

buf..ptr += v-.array->buf-.elsize;

freev-.array->buffer); /* de-allocate buffer 0

fclose~v-array->file); /* close array file o
free~v-.array); /* do-allocate VACB *

void *access..v.rec~varray,index)
VACE *v-array;
long index;

char *but-ptr;
int buf-index;
long rec-.index. temp..index;

/* calculate buffer address of referenced element o

but-.index =index % v-.array->but-size;
buf..ptr = v-.array->buffer + buf-index * v.array->but-elsize;
rec..index = *long *)buf-ptr;

6 7



/* if element present, return its buffer address */

if (rec-index == index) return(but-ptr + 4);

/* if element doesn't exist, extend the file */

if (index >= vYarray->size)
{

fseek(varray->file,O,2);

for (teampindex = v.array->size; temp-index++ <= index; )
fvrite(varray->blank.rec, v.array->elsize, 1. v-array-file);

v-aray->size = index + 1;

fseek(varray->fileO.O);

fvrite(&v-array->size. 4. 1, v-array->file);

/* if buffer slot is occupied by another element,/
/* save it to disk */

if (rec-index >= 0)

fseek(v-array->file, rec-index * v-rray->elsize + header, 0);

fvrite(buf-ptr + 4, varray->elsize. 1, varray->file);

/* read referenced element into buffer slot */

fseek(v-array->file, index * varray->elsize + header, 0);

fread(bufptr + 4. v-array->elsize, 1, v_array->file);

*((long *)buf.ptr) = index;

/* return address of element in buffer */

return(buf-ptr + 4);

/* .....................................................................*/

68



APPENDIX J: PROGRAM FILE: genfunc.c

/*PURPOSE : These general functions provide for routine evolutions

that occur a number of times in the Image processing
routines developed for analysis of speckle reduction
algorithms. Some require support of other functions

and are not totally independant.

*/

*include "thesis.h"

/* initial ITEXPC Board setup e/

startit()
{

sethdw(REGBASE,KEMBASE,KENORY);

setdim(XSIZEYSIZE,DEPTH);

aclear (IS, IYS,ICOL,NROW,COLOR);

fgono;

initializeC) ;

cls();
selectmem(KEMA);

display-mem(MEKA);

/* Get integer keyboard input */

geti(name, iptr)

char *name;

int *iptr;
{

printf(" %s ",name);

scanf(" %d",iptr);

/* Get floating point keyboard input */

getf (rname, riptr)

char *rname;

int *riptr;
{

printf("s ".rname);

scanf(" %f",riptr);

/* Pause routine used to prompt for operator intervention*/

69



wait 0

printf("\n\n Press Return to continue");
fflush~stdin);
getcharo;

/* returns minimum integer value from input array passed *

getmin(data,num)

int *data;
int num;

mnt t, min;

for (min= data[O), t=1 ;tnum ; t++)

if( data[t) < min mi = dataL[t);

return min;

/* returns maximum integer value from input array passed *

getmax Cdata, nun)

mnt *data;
int nun;

mnt t, max;

for (max= data[O], t=1 ;t<num ; t++)
if( data~t) > max )max = data~t);

return max;

/* DOS System Call to clear Display Screen *

.clearcreen.GCLEARSCREEN);

/* routine to read an image from disk *

readit()
/*program uses the following externals: filename,comline*/

extern char filename E20), comline[200),

70



int *rrval;
int cli;

whule(1)

printfC"\n\nENTER IMAGE FILENAME as CDEV:naze.IMG)->11);
ttlush(stdin);
scant C''s" .tilenane);
errval = readimCIXS,IYS.ICOLIROWtilename~couline);

it Cerrval ==0) (
printt('\nFILE-> %s. \n\nCOMMEIT: Vs" .filenamke,comline);
break;

if~errval != 0){

suitcb(errval)

case FILE-.ERROR:
printfC'Error opening file\n");
break;

case FORMAT-.ERROR:
printfC"Unknown tile format\n");
break;

case READ-ERROR:
printtQ"Error Reading file\n");
break;

default:
printt C"? Unknown Error ?%/d\n,errval);
break;

printfC"Try Again?? ..Yes~y) / lo~n)\n");
ch = getchC);
it~ch = II ch IyV) continue;
it(ch I= N' IIch I= n') exit(O);

/* routine to save an image to disk *

saveito)
/*programi uses the following externals: *filename,*comline*/

extern char filename[20), comline[200];
int tormnat, errval;
int ch;

initializeoC;
while(l)

71



printfC"1\n\nEITER FILENAME. .. CDEV:name. 1MG)->");
fflush(stdin);
scanfC"'",filename);
geti('\n Enter File Compression Value ? .. .CO/1)",kformat);
printfC"\n\n Enter Image Comment A .o continue.. (Max 200 CHAR)-.");
fflush(stdin);
gets Ccomline);

if(format ==1)pri.f("\n\nStoring Image Using Compression -- Please wait ')

if(format W=0printfC"\nStoring Image -- Please wait!!");

errval = saveim(IXS,IYS,NCOL,NROV,format,filename,coline);

if errval == 0) (
printf("\nlmage save completed Sat");
break;

if~errval != 0){
printfC"\n\a Error saving file!!");
if (errval == ALLOCATION-.ERROR) (

printf("\nlnsufficient Disk Space");

if Cerrval == WRITE_.ERROR){
printf("\nError writing file or values");

printf("\n\tTry Again?? ... .Yes~y) / No~n)");
ch = getcho);
if~ch II 1 ch 'y') continue;
if~ch IN' 11 ch 'n') break;

/* counter step routine *

step Cu.v)
int *u,*v;

*u += 1;

if(*u >= HIGH){
*u= 1;

*y += 1;

/0 threshold routine for feat..id.c*/

thresh()

int ans,c~option;

72



unsigned int val;

while (1)

initlutsO);
initialize(C);
getiC"\n\n\tENTER NEW THRESHOLD LEVEL (0-255) :',&val);

gotlutCIIPUT 1O);
threshold(INPUT,O,HIGHEST~val);

8setlut(RED,O);
tbzeshold(RED ,0 HIGHEST,val);

a etlut(GREEI,0);
thresholdGR.EEN,O ,HIGHEST,val);

se tlut(BLUE.0);
threshold(BLUE,O ,HIGHEST,val);
eetlut(INPUT,0);

printf('\n\nSATISFIED WITH THRESHOLD AT %d.. .Yes~y) / o~n)...,a)
e= getcho;

it~ans == 'Y 1ens = y') break;

maplutCIIPUT,O,IXS,IYS.ICOL,IROW);
initialize 0;

/* threshold routine for threshit.c *

threshit()

int ans~c,option;
iut *val;

while~l)

initlutso;
initializeo;
geti("\n\nEXTER NEW THRESHOLD LEVEL (0-255) :.,kval);
printf ('Y'.d\n' ,val);

a etlut(IIPUTO);
threshold(IIPUT,O,HIGHEST,val);

: etlut(RED,0);
thresholdCRED,OHIGHEST,val);

0 etlut(GREEN.O);
threshold(GREEN,0,HIGHEST~val);
setlut(BLUE.0);
threahold(flLUE,0,HIGHEST,val);
setlutCIIPUT,0);

print! C'\n\nSATISFIED WITH THRESHOLD AT %d?... .Yes(y) / o~n). .. ,a)

axis =getcho;

7:3



if(ans == II a s == 'y') break;
}
printf("\un\t\t 0: SAVE THE THRESHOLD IMAGE?...
printf("\n\t\t 1: QUIT (Leave thresholded image for further processing)...");
printf("\n\t\t 2: RESTORE system to original input image.. .1);
geti("\n\t Select option by NUMBER: "%&option);
switch(option)
{

case 0:

maplut(IIPUTO,IIS,IYSNCOL.NROW);

saveit C);
break;

case 1:
naplut(IPUT,0,IXS,IYS,ICOLIROu);

break;
case 2:

initializeo); /*initialize without mapping operation*/
break;

default:
break;

/* function to compute standard deviation of image */

dev(stddev)

float *stddev;
{

float var, sum, sqsum, sqvalue, dim, value;
long x, y;

sum = sqsum = 0;
dim = (float)NROW * ICOL;
for( y = 0 ; y <= IROW-1 ; y++)
{

for( x = 0 ; x <= ICOL-1 ; x++)
{

value = rpixel(x,y);
sqvalue = value * value;
sum += value/dim;
sqsum += sqvalue/dim;

}

var = sqsum - (su*sum);
*stddev = sqrt(var)

/* function to compute scale factor for sizing routine */

741



scaleCf actor)
float *factor;

int inch, pixel, flag;
float flinch, dpixel; /* default length values 5

/* flinch and dpixel are to be modified accordingly s
flinch = 1.00;
fipixel = 50.00;

printf("\n\tUtilizing standard SCALE-.FACTOR7. .. .Yes Cy) N o (n)");
flag = getcho);
if~flag == 'Y' 11 flag == y)

*actor = C(float)SCALE-.FACTOR);
I

if~flag == IN, 11 flag =='n')

printfC"\n\tPress '0' if using default values for length in inches or pixels");
getiC"\n\tEnter the length of object in inches~default):",&iJnch);
geti('\n\tEnter the length of object in pixels~defauJlt):",kpixel);

ifWinch ==0)

inch = finch;

if~pixel 0)

pixel = fpixel;

*factor =C(float)inch) / C(float)pixel);

printfC"\n\tSCALE-FACTOR is %f\n",*factor);

7}



APPENDIX K: C COMPILER OPERATIONS

The following batch files list the C compiler directives used to compile and link

all C programs. The C compiler files ACCOMP.BAT and DACCOMP.BAT are

listed below. ACCOMP.BAT contains the switches necessary to utilize CODEVIEW

debugger, and ACCOMP2.BAT is for final program optimization. The F drive listed

in the PATH statement of these batch files is due to the fact that the programs were

stored on a Bernoulli disk.

ACCONP.BAT:
path c:\;c:\dos;c:\wsjet;f:\kedit.*;c:\mousel;c:\xtree;c:\lsrctrl;...

f:\;f:\msc\bin;f:\msc\tmp;f:\msc\src;f:\msc\.rk;f:\msc\lib;...

f :\sc\include
set include=\msc\include
set 1ib=\msc\1ib;\pcp1us\itex\1ib
set tmp=\msc\tmp

cl /c /Fs /Zi /GO /AL /Fm %1.c

ACCOMP2.BAT
path c:\;c:\dos;c:\vsjet;f:\kedit.*;c:\mousel;c:\xtree;c:\lsrctrl;...

f:\;f:\msc\bin;f:\msc\tmp;f:\msc\src;f:\msc\vrk;f:\msc\lib;...

f \msc\include
set include=\msc\inciude
set lib=\msc\iib;\pcplus\itex\iib

set tmp=\msc\tmp

cl /c /Fs /Ze /GO /AL %1.c

The following batch files, LTHESIS.BAT and DTHESIS.BAT, link the programs

to the libraries and supporting function files. The speckle.c should not, be included

within these files when linking the programs sizeit.c and feat-id.c due to an undefined

external problem associated with the external variables SROW and SCOL. LTIIE-

SIS.BAT is used for debugging applications, and DTHESIS.BAT is for final program

76



optimization. It is also unnecessary to link feat-id.c and sizeit.c to the virtual array

functions contained within vir.arry.c.

LTHESIS.BAT:
IF NOT ERRORLEVEL 1 LIIK /NOD /CO /E %I genfunc speckle virarry ...

, ITEXPCKL.LIB LLIBCE.LIB;

DTHESIS.BAT:
IF NOT ERRORLEVEL 1 LINK /NOD ,'F X genfunc speckle virarry...

, ,ITEXPCML.LIB LLIBCE.LIB;

To create the menu format for program display, a C program named hologram.c

was generated. To link all image processing programs to this module, all program

"maino" statements were modified so that hologram.c was made the main program.

All image processing programs were then linked to hologram.c after compilation. The

ACCOMP2.BAT file was used for compilation, and the PTHESIS.BAT file was used

for subsequent module linking. Due to the length of the LINK statement, the user

must enter the libraries ITEXPCML and LLIBCE manually into the keyboard each

time the LINK process is accomplished.

PTHESIS.BAT:
IF NOT ERRORLEVEL 1 LINK /NOD /E .1 table speckle vir-arry...

genfunc threshit sizeit feat-id geofil..

lstat 2sigma

77



REFERENCES

1. Edwards, T. D., Implementation of Three Speckle Reduction Filters for Solid
Propellant Combustion Holograms, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1986.

2. Redman, D. N., Image Analysis of Solid Propellant Combustion Holograms
Using an Imageaction Software Package, Master's Thesis, Naval Postgraduate
School, Monterey, California, June 1986.

3. Orguc, E. S., Automatic Data Retrieval from Rocket Motor Holograms, Master's
Thesis, Naval Postgraduate School, Monterey, California, December 1987.

4. Kaeser, D. S., Code Optimization of Speckle Reduction Algorithms for Image
Processing of Rocket Motor Holograms, Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1988.

5. Imaging Technology Incorporated, ImageActionplus User's Guide, Imaging
Technology Incorporated, April 1987.

6. Imaging Technology Incorporated, ITEX/PCplus Programmer's Manual, Imag-
ing Technology Incorporated, April 1987.

7. Imaging Technology Incorporated, PCVISIONplus Frame Grabber User's Man-
ual, Imaging Technology Incorporated, April 1987.

8. Imaging Technology Incorporated, PC VISION Frame Grabber Manual, Imaging
Technology Incorporated, July 1985.

9. Crimmins. T. R., Geometric Filter for Reducing Speckle, Optical Engineering,
v. 25, pp. 651-654, May 1986.

10. Lee, J. S., Speckle Suppression and Analysis for Synthetic Apertur Radar, Op-
tical Engineering. v. 25, pp. 636-643, May 1986.

11. Microsoft Corporation, Microsoft Quick C Toolkit, v. 2.0, Microsoft Press, 1988.

12. Imaging Technology Incorporated, The ITEX/PC Programmer's Manual, Imag-
ing Technology Incorporated, 1985.

13. Tichenor, Mark, "Virtual Arrays in C," Dr. Dobb's Journal of Software Tools,
#138, pp. 46-66, May 1988.

14. Imaging Technology Incorporated, The ImageAction User's Guide, Imaging
Technology Incorporated. 1985.

15. Kernighan, Brian W., and Ritchie, Dennis IN.. Tht C Programming Language,
Second Edition. Prentice Hall, 1988.

78



16. Microsoft Corporation, Microsoft C 5.0 Optimizing Compiler User's Guide, Mi-
crosoft Corporation, 1987.

17. Microsoft Corporation, Microsoft C 5.0 Optimizing Compiler Microsoft Code-
view and Utilities, Microsoft Corporation, 1987.

79



INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 62
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor John Powers, Code 62Po 4
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey. California 93943-5002

5. Professor D. V. Netzer, Code 62Nt 2
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93943-5002

6. Air Force Astronautics Lab
Attention: Captain J. K. Crump
Edwards Air Force Base, California 93523-5000

7. NAVELEX Portsmouth
Attention: LT V. R. Hockgraver (Code OOL)
P. 0. Box 55
Portsmouth. Virginia 23705-0055

so


